skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sargolzaei, Arman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Connected and autonomous vehicles (CAVs) rely on communication channels to improve safety and efficiency. However, this connectivity leaves them vulnerable to potential cyberattacks, such as false data injection (FDI) attacks. We can mitigate the effect of FDI attacks by designing secure control techniques. However, tuning control parameters is essential for the safety and security of such techniques, and there is no systematic approach to achieving that. In this article, our primary focus is on cooperative adaptive cruise control (CACC), a key component of CAVs. We develop a secure CACC by integrating model-based and learning-based approaches to detect and mitigate FDI attacks in real-time. We analyze the stability of the proposed resilient controller through Lyapunov stability analysis, identifying sufficient conditions for its effectiveness. We use these sufficient conditions and develop a reinforcement learning (RL)-based tuning algorithm to adjust the parameter gains of the controller, observer, and FDI attack estimator, ensuring the safety and security of the developed CACC under varying conditions. We evaluated the performance of the developed controller before and after optimizing parameters, and the results show about a 50% improvement in accuracy of the FDI attack estimation and a 76% enhancement in safe following distance with the optimized controller in each scenario. 
    more » « less
    Free, publicly-accessible full text available December 31, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Free, publicly-accessible full text available July 8, 2026
  4. Free, publicly-accessible full text available March 22, 2026
  5. Free, publicly-accessible full text available March 22, 2026
  6. The combination of connectivity and automation allows connected and autonomous vehicles (CAVs) to operate autonomously using advanced on-board sensors while communicating with each other via vehicle-to-vehicle (V2V) technology to enhance safety, efficiency, and mobility. One of the most promising features of CAVs is cooperative adaptive cruise control (CACC). This system extends the capabilities of conventional adaptive cruise control (ACC) by facilitating the exchange of critical parameters among vehicles to enhance safety, traffic flow, and efficiency. However, increased connectivity introduces new vulnerabilities, making CACC susceptible to cyber-attacks, including false data injection (FDI) attacks, which can compromise vehicle safety. To address this challenge, we propose a secure observer-based control design leveraging Lyapunov stability analysis, which is capable of mitigating the adverse impact of FDI attacks and ensuring system safety. This approach uniquely addresses system security without relying on a known lead vehicle model. The developed approach is validated through simulation results, demonstrating its effectiveness. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. Connected and Autonomous Vehicles (CAVs) have the potential to revolutionize transportation by addressing critical challenges such as safety, energy efficiency, traffic congestion, and environmental impact. Realizing these benefits, however, requires the development of a rigorous testing and verification framework to enable the safe, efficient, and reliable deployment of CAVs across diverse operational scenarios. Despite the growing body of research, there remains a significant gap in review papers that comprehensively summarize recent studies related to the testing and verification of CAVs while identifying current challenges and highlighting future research directions. This paper seeks to address this gap by presenting a comprehensive review of the existing testing and verification frameworks for CAVs and identifying their associated challenges. Key topics covered include scenario generation, verification cost functions, assertion values, and security considerations. Furthermore, the paper highlights limitations within current frameworks, emphasizing the gaps that hinder systematic and comprehensive evaluations. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  8. Cooperative adaptive cruise control (CACC) is one of the main features of connected and autonomous vehicles (CAVs), which uses connectivity to improve the efficiency of adaptive cruise control (ACC). The addition of reliable communication systems to ACC reduces fuel consumption, maximizes road capacity, and ensures traffic safety. However, the performance, stability, and safety of CACC could be affected by the transmission of outdated data caused by communication delays. This paper proposes a Lyapunov-based nonlinear controller to mitigate the impact of time-varying delays in the communication channel of CACC. This paper uses Lyapunov–Krasovskii functionals in the stability analysis to ensure semi-global uniformly ultimately bounded tracking. The efficaciousness of the proposed CACC algorithm is demonstrated in simulation and through experimental implementation. 
    more » « less